Autocrine activation of the IGF-I signaling pathway in mesangial cells isolated from diabetic NOD mice.

نویسندگان

  • Ivan Tack
  • Sharon J Elliot
  • Mylene Potier
  • Ana Rivera
  • Gary E Striker
  • Liliane J Striker
چکیده

Mesangial cells isolated from NOD mice after the onset of diabetes have undergone a stable phenotypic change. This phenotype is characterized by increased expression of IGF-I and downregulation of collagen degradation, which is associated with decreased MMP-2 activity. Here, we investigated the IGF-I signaling pathway in mesangial cells isolated from NOD mice before (nondiabetic NOD mice [ND-NOD]) and after (diabetic NOD mice [D-NOD]) the onset of diabetes. We found that the IGF-I signaling pathway in D-NOD cells was activated by autocrine IGF-I. They had phosphorylation of the IGF-I receptor beta-subunit, phosphorylation of insulin receptor substrate (IRS)-1, and association of the p85 subunit (phosphatidylinositol 3-kinase [PI3K]) with the IGF-I receptor and IRS-1 in D-NOD cells in the basal state. This was also associated with increased phosphorylation of ERK2 in D-NOD mesangial cells. Inhibiting autocrine IGF-I from binding to its receptor using an IGF-I-neutralizing antibody or inhibiting IGF-I signaling pathways using a specific PI3K inhibitor or a specific mitogen-activated protein kinase/extracellular response kinase kinase inhibitor decreased phosphorylated ERKs in D-NOD cells. Importantly, this was associated with increased MMP-2 activity. The addition of exogenous IGF-I to ND-NOD activated signal transduction. Therefore, we conclude that the IGF-I signaling pathway is intact in both D-NOD and ND-NOD cells. However, the phenotypic change in D-NOD cells is associated with constitutive activation of the IGF-I signaling pathways, which may participate in the development and progression of diabetic glomerulosclerosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low insulin-like growth factor binding protein-2 expression is responsible for increased insulin receptor substrate-1 phosphorylation in mesangial cells from mice susceptible to glomerulosclerosis.

Mesangial cells (MC) isolated from glomerulosclerosis-prone ragged, olygosyndactilism, pintail (ROP) mice retain a stable phenotype after exposure to elevated glucose concentrations, whereas MC from glomerulosclerosis-resistant C57BL/6 (C) mice do not. In NOD and db/db mice, the stable phenotype induced by diabetes consists of autocrine activation of the IGF-I signaling pathway. We hypothesized...

متن کامل

Regulation of insulin-like growth factor I receptors in diabetic mesangial cells.

Mesangial cells are thought to play a central role in the renal complications of diabetes mellitus. Insulin-like growth factor I (IGF-I) has been found to promote mesangial cell proliferation and regulate normal mesangial cell function in an autocrine and/or paracrine fashion. To gain further insight into the potential regulatory role IGF-I may play in mesangial cell function in diabetes, IGF-I...

متن کامل

Treatment effect of GABA on improve type one diabetes in NOD mice

Introduction: Gama amino butyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian nervous system. The concentration of GABA and the number of GABA cell secretion decrease in diabetic patient and experimental diabetes model. The reported effects of GABA activation on insulin secretion from beta cells have been controversial. In this study we investigated if GABA administr...

متن کامل

CTLA-4–Ig Activates Forkhead Transcription Factors and Protects Dendritic Cells from Oxidative Stress in Nonobese Diabetic Mice

Prediabetes and diabetes in nonobese diabetic (NOD) mice have been targeted by a variety of immunotherapies, including the use of a soluble form of cytotoxic T lymphocyte antigen 4 (CTLA-4) and interferon (IFN)-gamma. The cytokine, however, fails to activate tolerogenic properties in dendritic cells (DCs) from highly susceptible female mice early in prediabetes. The defect is characterized by i...

متن کامل

Insulin-like growth factors prevent cytokine-mediated cell death in isolated islets of Langerhans from pre-diabetic non-obese diabetic mice.

Interleukin-1beta (IL-1beta), tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) contribute to the initial stages of the autoimmune destruction of pancreatic beta cells. IL-1beta is released by activated macrophages resident within islets, and its cytotoxic actions include a stimulation of nitric oxide (NO) production and the initiation of apoptosis. Insulin-like growth f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 51 1  شماره 

صفحات  -

تاریخ انتشار 2002